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Analytic second derivatives in high-order many-body perturbation and
coupled-cluster theories: computational considerations and applications

JOHN F. STANTON²

Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry,

The University of Texas at Austin, Austin, Texas 78712, USA

and J ÈURGEN GAUSS

Institut f Èur Physikalische Chemie, Universit Èat Mainz, D-55099 Mainz, Germany

The history of analytic ® rst- and second-derivative methods in quantum
chemistry is discussed, with special emphasis given to approaches that are as-
sociated with electron correlation treatments based on many-body perturbation
theory (MBPT) and the coupled-cluster (CC) approximation. The computational
requirements of recently developed analytical second derivative methods for high-
order MBPT and CC methods are discussed in detail and compared with those
associated with ® nite-diŒerence procedures. Applications of these techniques to
the calculation of anharmonic force ® elds used to deduce equilibrium geometries
and fundamental vibrational frequencies for polyatomic molecules are reviewed.

1. Background

Analytic derivative methods are arguably the most important tools available to

the computational chemist for studying the structure, potential energy surface and

spectroscopy of molecules. While the importance of such calculations was recog-

nized very early by Bratoz [1], Pulay was the ® rst to plough this fertile area of

research. Although it is obvious that analytic derivatives are more accurate than
those obtained by numerical diŒerentiation, Pulay [2] was able to demonstrate that

the ® rst derivatives of the self-consistent ® eld (SCF) energy are also obtained most

e� ciently by analytic procedures. After developing a computer program to perform

gradient calculations, Pulay [3] and collaborators used a mixed analytical± numerical

method (dubbed the f̀orce method’) based on numerical diŒerentiation of analytic

derivatives to study the harmonic force ® elds of a wide range of molecules. Analytic
® rst derivatives led to a revolution in the scope of practical application studies. In

particular, many of the tasks taken for granted today (geometry optimizations, har-

monic frequency calculations and transition state searches for polyatomic molecules)

became routinely possible for the ® rst time.

The remarkable feature that numerical evaluation of derivatives can be consid-

erably more expensive than analytic calculation is a consequence of the so-called
2n+ 1 rule of perturbation theory. It is possible to show that the (2n+ 1)th derivative

of the energy with respect to some perturbation (nuclear displacement, electric ® eld,

etc.) can be expressed entirely in terms of derivatives of the wavefunction through

order n and all derivatives (up to order 2n + 1) of the Hamiltonian. Hence, only

the ® rst derivatives of the one-electron and interelectronic repulsion integrals with
respect to the perturbations must be calculated to obtain the energy derivatives. For
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62 J. F. Stanton and J. Gauss

one-electron perturbations, the cost of this extra step is negligible; for two-electron

perturbations such as nuclear displacements the cost is generally comparable with
the SCF calculation itself. Therefore, SCF gradient calculations require roughly twice

the computer time need to evaluate the energy. Since the number of non-vanishing

diŒerentiated one- and two-electron integrals does not scale with the number of

nuclear displacements considered (for any order of diŒerentiation), no step involved

in a SCF gradient evaluation has such a dependence. It must be emphasized that
the relative cost of analytic gradient and energy calculations is constant, whether

one considers a diatomic molecule or a larger system such as p-dinitrobenzene. In

contrast, the cost of numerical diŒerentiation of the energy necessarily scales with

the number of atoms. Hence, although just two energy calculations su� ce for the

diatomic1, 16 are needed for all non-vanishing and symmetry-distinct derivatives in
the latter example. While there is no advantage apart from accuracy in calculating

the derivative analytically for the diatomic molecule, numerical evaluation of the

gradient for p-dinitrobenzene requires about an order of magnitude more computer

time.

From the previous paragraph, it should be clear that the advantages of analytical

derivative evaluation are not restricted to the SCF level of theory. Indeed, the 2n + 1

rule can be applied to any quantum chemical method that involves wavefunction
optimization. The insatiable demand for greater accuracy and the astounding im-

provements in computer technology in the late 1970s and 1980s provided the impetus

for a great deal of work in which analytic derivative methods were developed for

approaches that treat electron correlation eŒects. The ® rst success in this area was

reported by Pople et al. [4] in 1979, who implemented ® rst derivatives for the sim-
plest electron correlation treatment, that is second-order many-body perturbation

theory (MBPT(2)) [5].

At the correlated level of theory, the wavefunction is parametrized by the basis

set expansion coe� cients of the molecular orbitals, and a set of amplitudes that

serve to weight the contribution of various Slater determinants in the electronic

wavefunction. While the 2n + 1 rule guarantees that it is possible to eliminate

derivatives of wavefunction parameters even when the energy is not stationary
with respect to ® rst-order variation of them, it was not immediately clear how this

might be done in practice. For MBPT(2), Pople et al. [4] explicitly solved for the

perturbed molecular orbitals and found that the ® rst-order amplitude parameters

could be eliminated in a trivial way. The former procedure involves solution of the

coupled ± perturbed Hartree ± Fock (CPHF) equations [6, 7], and its cost is negligible
when compared with the other requirements of a correlated calculation. While

con® guration interaction (CI) methods [8] are de® ned in such a way that the energy

is stationary with respect to variation of the wavefunction amplitudes, methods based

on MBPT and the coupled-cluster (CC) approximation [9 ± 12] (where wavefunction

amplitudes will be designated by T, which is assumed to comprise contributions of

various order when appropriate for MBPT calculations) do not share this feature.
In the MBPT and CC methods, however, all contributions to the energy derivative

1 In order to achieve acceptable accuracy, it is customary to use double-sided numeri-
cal diŒerentiation, that is df / dx|x0

1
2

1 [f (x0 + ) f (x0 )], where is some small

displacement.
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Analytic second derivatives in high-order MBPT and CC theory 63

that involve amplitude derivatives ¶ T/ ¶ c have the general mathematical structure

¶ E

¶ c
Ü aM 1 b c , (1)

in which evaluation of M 1b c gives the corresponding ¶ T/ ¶ c amplitudes and a

is independent of the perturbation [13 ± 16]. The matrix M is much too large to

be inverted explicitly, and iterative procedures are therefore required. Inspection

of equation (1) shows that there is an option of evaluating several sets of ¶ T/ ¶ c
amplitudes (with respect to all perturbations) and contracting the solution vectors

with a, or solving just one linear equation, z = aM 1 and taking the dot product

of z with all b c . For the MBPT, this issue does not arise (the matrix M is usually

diagonal) , but it is important in the context of CC theory. At this level, evaluation of

either a speci® c M 1bc or aM 1 costs roughly the same as an energy calculation; the
dot products require essentially no time at all. Hence, the second strategy mentioned

above is preferred. This general approach was apparently ® rst used in quantum-

mechanical computations by Sternheimer and Foley [17] in 1953 and somewhat

later by Dalgarno and Stewart [18] but was introduced into quantum chemistry

three decades later by Handy and Schaefer [19] to remove the dependence of CI
derivatives on the perturbed molecular orbitals. In an important subsequent paper,

Adamowicz et al. [20] applied this technique to the problem of eliminating all ¶ T/ ¶ c
contributions from analytic derivative expressions in CC theory. The corresponding

solution vector is commonly referred to as in the literature [16, 21]. A somewhat

diŒerent perspective on CC gradient theory is possible, in which the energy is given

as an eigenvalue to a non-Hermitian similarity transformed Hamiltonian matrix2.
In this approach, arises in a natural way as the left eigenvector of this matrix and

the stationary nature of the eigenvalue problems can then be used to simplify the

gradient formulation. Hence, it is quite convenient to regard the amplitudes as

an additional (but inessential) set of wavefunction parameters for CC and MBPT

(where analogous quantities can be de® ned at each order) and we shall do so for
the remainder of this article.

Outlined above are many of the signi® cant advances that have led to the ready

availability of analytic ® rst derivative methods for essentially all quantum-chemica l

methods. For variational methods, analytic derivatives have been implemented for
SCF [2], CI [23, 24], multicon® gurational self-consistent ® eld (MCSCF) [25, 26]

and MCSCF-based CI procedures [27]. Non-variationa l methods based on the

MBPT and CC theory are more often used in quantum-chemica l studies than CI

approaches, however, and it seems clear that the coupled cluster singles plus doubles

with perturbative triples (CCSD(T)) treatment of electron correlation [28] is the de

facto method of choice when highly accurate results are desired. As seen in table 1,
analytic gradient methods are available for CCSD(T) as well as for all other levels

of MBPT and CC that are commonly used in chemical applications3.

SCF second derivatives were ® rst implemented e� ciently by Pople et al. [4] and

described in their classic 1979 paper. At this level of theory, it turns out that analytic
evaluation is considerably more e� cient than numerical diŒerentiation of analytic

derivatives. While it is true that the ® rst derivative of all wavefunction parameters

2 For a discussion on this point, see [22].
3 For reviews, see [11] and [29].
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64 J. F. Stanton and J. Gauss

Table 1. Availability of analytic ® rst- and second-derivative implementations for MBPT
and CC methods as of 1994: SDQ± MBPT(4), fourth-order many-body perturbation
theory exclusive of triple excitations; CCD coupled cluster doubles; QCISD, quadratic
con® guration interaction singles plus doubles; CCSD, coupled cluster singles plus
doubles.

Asymptotic First Second
Method cost derivatives derivatives

MBPT(2) N5 X X

MBPT(3) N6 X
SDQ± MBPT(4) N6 X
CCD N6 X
QCISD N6 X
CCSD N6 X X

MBPT(4) N7 X
CCSD+T(CCSD) N7 X
CCSD(T) N7 X
QCISD(T) N7 X
CCSDT± 1 N7 X
CCSDT± 2 N7

CCSDT± 3 N7

CCSDT N8

CCSDTQ N10

must be determined in an analytic second-derivative calculation, solution of the

corresponding CPHF equations is an insigni® cant computational step even when

a fairly large number of perturbations is considered. Moreover, storage of the
diŒerentiated molecular orbital coe� cients does not represent a practical problem

even when very little disk space is available. Since solution of the CPHF equations

does not represent a rate-limiting computational step, the cost of analytic SCF

second-derivative calculations does not scale with the number of perturbations.

Consequently, it is clearly preferable to any sort of numerical procedure and therefore
is used almost exclusively in practice.

With regard to analytic second derivatives at the correlated level, the situation is

qualitatively diŒerent from that associated with ® rst derivatives. Analytic calculations

of harmonic force constants and other second-order properties are rarely found

in the literature for correlated methods other than MBPT(2) [30] and MCSCF
[31]. Table 1 shows that analytic second derivatives had been implemented for
only two non-variationa l treatments of electron correlation up to 1994. MBPT(2)

second derivatives were developed simultaneously by the Cambridge and Gainesville

groups in 1984 [32, 33] and later implemented in a number of commercially available

program packages. However, it appears that only a single application calculation was

reported with the ® rst implementation of CCSD [34] second derivatives, programmed
10 years ago in a joint eŒort of the Aarhus and Georgia groups [35]. Among

variational methods, CI second derivatives have been implemented [36] but are

seldom used in practice. From the above, it is easy to see that no advances having

a signi® cant impact on chemical applications were made in the ® eld of analytic

second-derivative calculations for more than a decade.
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Analytic second derivatives in high-order MBPT and CC theory 65

There are three primary reasons why development of analytic second derivatives

for correlated methods advanced much more slowly than that of ® rst derivatives.
First, the necessary evaluation of diŒerentiated wavefunction parameters is now a

rate-determining computational step and the cost of these calculations therefore

scales with the number of perturbations. When one remembers that analytic ® rst

derivative evaluation has no such dependence, an argument can be made that

the e� ciency of calculating second derivatives by numerical diŒerentiation of ® rst
derivatives (the force method) is comparable with that of analytic evaluation at the

correlated level. Second, most formulae worked out for analytic second derivatives

have the property that interchanging the positions of the perturbations and leaves

the equation for ¶ 2E/ (¶ ¶ ) unchanged. A consequence of this s̀ymmetric’ property

is that it is necessary either to store derivative wavefunction parameters for all
perturbations simultaneously or to accept a computational cost that scales with the

square of the number of perturbations. In contrast with gradient calculations, which

require only about twice the disk storage of the corresponding energy evaluation4

(there is no dependence on the number of perturbations) , the ® rst option ultimately

imposes limitations on the size of systems that can be treated and was especially

relevant in the 1980s and early 1990s (when 1 Gbyte of disk space was considered
a luxury); the second option is clearly unacceptable. The ® nal reason for the

stagnated development of correlated second-derivative methods is simply that these

approaches are complicated, both in the derivation of the equations and in the

logic of a computer program that is needed to solve them. While quantum chemists

have never allowed complexity to be the sole barrier to progress, the two practical
considerations discussed above provided a su� ciently large incremental barrier that

little eŒort was made in this area for many years.

In spite of the issues raised in the preceding paragraph, there are several areas

of application in which analytic second derivatives are useful. An extreme example

is provided by magnetic properties, particularly nuclear magnetic resonance (NMR)

chemical shifts which represent perhaps the most important spectroscopic observ-

able in organic chemistry. Elements of the chemical shielding tensor are given by
second derivatives of the energy with one class of perturbations comprising the

three magnetic ® eld components and the other 3N (N is the number of atoms)

are the nuclear magnetic moments. Since the magnetic ® eld is a formally imaginary

perturbation, any sort of numerical evaluation of magnetic properties requires the

calculation of wavefunctions parametrized by complex numbers [37, 38]. Because
the number of quantities that must be calculated and processed is doubled, such cal-

culations are necessarily more expensive. Moreover, few program packages support

complex wavefunctions, especially at the high-order MBPT and CC levels, where the

cost of energy evaluation is greater than that incurred when only real wavefunction

parameters are involved [39].

A second area is the determination of anharmonic force ® elds and other types of

higher-order property. In order to go beyond the usual comparisons with experiment
used in quantum chemistry that are based on harmonic vibrational frequencies,

rotational constants determined from moments of inertia of the equilibrium structure

4 This statement applies to CC theory and MBPT at third and higher orders. MBPT(2) is
a special case and the required disk space is considerably less. In the remainder of this article,
use of the term h̀igh-order’ MBPT will be used to refer to all MBPT methods beyond (and
exclusive of) MBPT(2).
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66 J. F. Stanton and J. Gauss

and so on, it is necessary to carry out such calculations. While it should be mentioned

that the use of high-level CC correlation methods for calculations of this type was
pioneered by Lee, Taylor, Martin and their associates5, it is undeniable that the

purely numerical procedures used in their work scale less favourably with the

size of the system than those based on numerical diŒerentiation of analytic second

derivatives. To predict positions of vibrational levels with spectroscopic perturbation

theory [42], it is necessary to evaluate fourth derivatives of the energy. Within a
purely numerical procedure, the number of required energy points must increase

with the fourth power of the number of coordinates, while the cost of evaluating

the entire quartic force ® eld scales only with the third power when the calculation

is based on numerical diŒerentiation of either analytic gradients or analytic second

derivatives. Since the accuracy of quartic force constants calculated as numerical
second derivatives of analytic harmonic force constants is higher than of those

obtained by numerical diŒerentiation of analytic gradients, the former option is

preferable. In fact, it has been stated explicitly in the literature that t̀he determination

of complete quartic force ® elds for larger molecules is not feasible without analytic

higher-order derivative methods’ which (at that time) àre not available in most

cases’ [43].

For the past 5 years, our groups have been actively engaged in the development

and implementation of analytic second-derivative methods for high-order MBPT

and CC methods, and in their application to problems of the sort mentioned above.
The remainder of this paper is devoted to a discussion of these methods and some

of the chemical applications for which they have thus far been used. In the next

section, a brief sketch is given about how some of the problems mentioned earlier

have been overcome in our approach as well as a fairly comprehensive discussion

of the computational requirements associated with our analytic second-derivative
implementation. We have chosen to limit the number of equations and mathematical

detail in favour of a more general description that covers most of the major issues

involved in these calculations. Following that, a description is given of how these

methods are used to calculate anharmonic force ® elds and some pertinent application

studies are reviewed.

2. Computational aspects

2.1. Asymmetric strategy for second derivatives

In the early 1990s, it was realized that the disk space and computational scaling

problems associated with correlated analytic second derivative calculations could

be avoided in calculations of NMR chemical shifts [44]. For calculations of the

chemical shielding tensor (which is diagonalized to obtain the chemical shifts),

analytical second derivatives have turned out to be particularly useful [38, 45]; all

quantities encountered in the procedure are either real or purely imaginary. Hence,
real arithmetic can be used throughout the program (with a caveat that imaginary

quantities are given by antisymmetric matrix representations) , which avoids the

problem associated with processing complex wavefunction parameters. Second, all

strategies for computing NMR chemical shifts at the SCF level are based on an

equation for the second derivative that is not symmetric in the sense that interchange
of the magnetic ® eld and nuclear magnetic moments changes the appearance of the

5 For representative examples, see [40, 41] and references therein.
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Analytic second derivatives in high-order MBPT and CC theory 67

expression [38, 45 ± 47]. Such àsymmetric’ second-derivative formulae can always

be derived by taking the optimal form of the ® rst-derivative expression (in which
perturbed wavefunction parameters do not appear) and diŒerentiating this with

respect to the second class of perturbations. The resulting expression takes the

generic form

¶ 2E

¶ ¶
= D

¶ 2H

¶ ¶
+

¶ D

¶
¶ H

¶
, (2)

where D represents eŒective one- and two-particle density matrices speci® c to
the method used6 and is a function of the unperturbed wavefunction parameters

(molecular orbital coe� cients and T and amplitudes).

At the correlated level of theory, signi® cant practical advantages can be achieved

if is associated with the magnetic ® eld perturbation (there are three components)

and with the nuclear magnetic moments (3N , where N is the number of atoms).
With this choice, it is necessary to solve for only three sets of perturbed wavefunction

amplitudes, with the consequence that the computational time required for these

calculations does not exhibit a dependence on the size of the molecules apart

from that associated with the basis set. Even though storage of three sets of

perturbed amplitudes is unlikely to pose a problem, equation (2) can still be evaluated
e� ciently if only one set of amplitudes is stored at a given time. For all methods

beyond MBPT(2), the cost of calculating the perturbed density scales with at

least the sixth power of the basis set size, while that associated with derivative

integral evaluation scales only with the fourth power. This qualitatively diŒerent

computational dependence can be exploited by storing the perturbed density on
disk for a particular perturbation and then contracting it with derivative integrals

(which are never written to disk but rather processed as they are calculated) for all

perturbations.

Calculations of NMR shifts at the MBPT(2) level were ® rst carried out using the

strategy sketched above [44, 49]. Implementation at the MBPT(3), SDQ ± MBPT(4),

MBPT(4), QCISD [50], CCD [51, 52], CCSD [34] and CCSD(T) [28] levels followed
and were reported within a 3 year period in the middle of this decade [48, 53± 55].

Because problems associated with numerical calculations of NMR chemical shifts

had been su� cient to prevent any previous high-order MBPT and CC calculations,

these pioneering studies gave the ® rst glimpse of how electron correlation eŒects

described by the popular MBPT and CC methods aŒect this critically important
chemical property.

It is important to realize that the strategy of storing only one set of perturbed

amplitudes for evaluating the second contribution to equation (2) is not restricted

to NMR shift calculations (or any other property for which represents a class of

perturbations that comprises only three components) . In particular, one can apply
the same approach to the calculation of harmonic force constants. While it is true

that such a calculation still requires the solution of perturbed amplitude equations

for each independent nuclear motion coordinate and therefore has a computational

cost that scales with the number of atoms in the system, the amount of disk space

needed is only about twice that of a gradient calculation. Despite this, there is

an undesirable feature of this approach which warrants discussion. A formula for

6 See [48] for explicit de® nitions.
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68 J. F. Stanton and J. Gauss

MBPT and CC second derivatives that is symmetric with respect to interchange of

and can be written in the general form

¶ 2E

¶ ¶
= D

¶ 2H

¶ ¶
+

¶ D

¶
¶ H

¶
+

¶ D

¶
¶ H

¶
+

¶ 2D

¶ ¶
H. (3)

The subscripts on the partial derivatives have the same sense as in thermodynamics;

contributions that include diŒerentiated amplitudes are omitted. Hence, there

is a de® nite computational advantage to the symmetric approach; only the linear

equation that de® nes the ¶ T/ ¶ c amplitudes must be solved for each perturbation

c since the corresponding ¶ / ¶ c amplitudes are not needed. It is the fourth term
of equation (3) that is somewhat problematic. There are essentially two options

that can be exercised to evaluate it, and neither is entirely satisfactory. The ® rst is

based on the aforementioned simultaneous storage of all diŒerentiated wavefunction

parameters. While not a serious problem nowadays for most CCSD calculations7,

it does eventually represent a constraint. The second choice is to store just one

set of perturbed amplitudes, followed by calculation of those corresponding to all
other perturbations and contracting them òn the ¯ y’ with the stored amplitudes, a

process that must be repeated for all perturbations. This results in a computational

dependence on the square of the number of atoms, which is a most unsatisfactory

situation.

Despite these quali® cations, it is our belief that the asymmetric approach based
on equation (2) represents a highly practical and generally useful method for second-

derivative evaluation at highly correlated MBPT and CC levels of theory. First, it

can be applied quite easily to the calculation of all second-order properties, whether

or not the two classes of perturbation are the same. When they are not, it is certainly

preferable to the symmetric approach since fewer sets of perturbed amplitudes need
to be evaluated. For force constants, polarizabilities and other such properties, it is

less e� cient with regard to computer time at the CCSD level and an implementation

of the symmetric approach might be warranted. However, some of our current

research eŒorts are directed towards analytic second derivative calculations at the

CCSD(T) level of theory where the fourth term of equation (3) represents a serious

problem indeed. Another reason for preferring the generally applicable asymmetric
strategy is that accurate calculations of molecular properties require some treatment

of triple excitation eŒects. Accordingly, the CCSD(T) method is heavily used in

practice. In analytic second derivative evaluation at this level of theory, the energy

contribution due to triple excitations is treated separately from the CCSD correlation

energy. There is a clearly optimal method for obtaining the second derivative of
the triples energy, which usually represents a signi® cant fraction of the overall

computational time. Hence, the question of whether the asymmetric or symmetric

strategy is followed for the CCSD contribution becomes a less important issue with

regard to computer time [56]. Finally, use of equation (2) allows some additional

second-order quantities to be evaluated for negligible cost. For example, in a force
constant calculation, one can simply augment the list of perturbations represented

by in equation (2) by the electric ® eld. Since the calculation of the dipole integrals

(corresponding to ¶ H/ ¶ ) requires essentially no computer time, the full set of dipole

7 For a calculation on a molecule containing 12 atoms and 40 electrons described by 200
basis functions in Cs symmetry, the storage requirement of perturbed amplitudes is about 2
Gbytes; with 15 atoms, 30 electrons and 250 basis functions it rises to 5.5 Gbytes.
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Analytic second derivatives in high-order MBPT and CC theory 69

derivatives can be obtained as a simple byproduct of a force constant calculation.

In the symmetric approach, it would be necessary to solve for derivatives of the
wavefunction parameters with respect to the electric ® eld to obtain them.

Analytic second derivatives at several levels of MBPT and CC theory have been

implemented using the asymmetric strategy in the last 4 years. The required extension

and generalization to force constant calculations of the original computer program

for NMR chemical shifts at the CCSD(T) level was completed in 1997. Once this
objective was achieved [57], it was straightforward to evaluate second derivatives at

any order of MBPT up to MBPT(4) as well as CCD and CCSD and the approxi-

mate CC methods known as QCISD and QCISD(T) [50]. Extension to open-shell

systems described by an unrestricted Hartree ± Fock (UHF) reference determinant

was reported the following year [58]. As alluded to above, the implementation is
very general and can be used for any second-order property that corresponds to

either real or imaginary perturbations. Calculations of any second-order property

are relatively simple; the only requirement is that it might be necessary to program

the integrals that correspond to the relevant perturbations.

2.2. Implementation and practical considerations

Because of diŒerences among various orders of MBPT and levels of CC theory, it

is rather di� cult to give a description of computational aspects of the corresponding

second-derivative methods that is both complete and concise. As a result, emphasis

is placed on the CCSD and CCSD(T) methods in this section. For the most part,
the most demanding computational steps in MBPT(3) and partial (without triples)

MBPT(4) (SDQ ± MBPT(4)) calculations are the same as those in CCSD, except that

they are performed several times in the latter since the T amplitude equations are

solved iteratively. CCD and QCISD can be viewed as approximations to CCSD in

which some computationally inexpensive steps are omitted. In addition, the second
derivative of the fourth-order triples excitation energy in MBPT(4) is evaluated in a

similar way (but slightly lower cost) as that of the triple excitation correction that

de® nes the CCSD(T). MBPT(2) is a special case to which the discussion below does

not apply.

The general logical structure followed in our implementation of high-order

MBPT and CC analytic second-derivative calculations is shown schematically in
® gure 1. After the unperturbed wavefunction and density have been constructed

and stored, the corresponding perturbed quantities are evaluated and processed

sequentially. The computationally dominant8 procedures involved in analytic CCSD

second-derivative calculations are as follows:

Step 1: solution of the set of coupled nonlinear equations that de® nes the T

amplitudes;
Step 2: solution of the linear equation that de® nes the amplitudes;

Step 3: construction of the two-particle density matrix, which involves contrac-

tions between T and amplitudes;
Step 4: iterative solution of the linear equation that determines the ¶ T/ ¶

amplitudes;

8 The steps listed are those usually said to scale with the sixth power of the basis set. The
scaling properties are actually dependent upon the number of occupied (n) and unoccupied
(N) molecular orbitals, and the scaling will usually follow n3N3 or n2N4, depending on the
ratio N : n.
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70 J. F. Stanton and J. Gauss

Figure 1. Flow diagram for CC analytic second-derivative calculations.

Step 5: iterative solution of the linear equation that determines the ¶ / ¶
amplitudes;

Step 6: construction of the perturbed two-particle density matrix, which consists

entirely of T¶ / ¶ and ¶ T/ ¶ contractions.

Steps 1± 3 are also required in analytic gradient calculations; the remaining three
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Analytic second derivatives in high-order MBPT and CC theory 71

steps, steps 4 ± 6 (which must be performed for all perturbations ), correspond to

evaluation of diŒerentiated counterparts of the terms evaluated in steps 1± 3.
When very large basis sets are used, the number of unoccupied molecular

orbitals is much greater than the number occupied orbitals; in this limit, the total

number of arithmetic operations required in each iteration of steps 1, 2, 4 and

5 are approximately the same9. With smaller basis sets, the costs of steps 2 and

5 are still about the same, but determining T (step 1) is slightly more expensive

than step 4. The number of operations needed to evaluate the ® rst derivative of
the density matrix is about twice that involved in calculating D itself. However,

evaluation of D and ¶ D/ ¶ c is non-iterative and steps 3 and 6 consequently require

less time than the other four steps. In general, the time required to evaluate D

and ¶ D/ ¶ c is comparable with that for two or four iterations respectively of the

unperturbed CCSD equations. Hence, the ratio of timings for steps 4 ± 6 to those for
steps 1 ± 3 will be somewhat greater than unity. In addition, steps 4 and 5 require the

(non-iterative) calculation of inhomogeneous terms that themselves have the cost

of one iteration. Therefore, if translational and rotational invariance conditions are

ignored and 3N nuclear displacement perturbations are considered explicitly10, the

cost of an analytic CCSD second-derivative calculation will usually be in the range
(3 ± 5) NZ , where Z is the cost of a single gradient calculation. In MBPT(3) and

SDQ ± MBPT(4), each of steps 4 ± 6 is about twice as expensive as evaluation of the

corresponding unperturbed quantities. Hence, the cost of analytic second-derivative

evaluation for these methods is higher than for CCSD and should be close to

6NZ .

DiŒerent considerations apply to CCSD(T). In this approach, non-iterative cor-
rections due to triple excitations are evaluated, and the cost of these corrections is

typically much greater than those which depend solely on single and double exci-

tation amplitudes11. The most costly steps for CCSD(T) analytic second derivatives

are listed below, with the ® rst three again being required for gradient calculations:

Step 7: calculation of the unperturbed T3 amplitudes;

Step 8: calculation of triple excitation contributions to the equations;

Step 9: calculation of contributions to the two-particle density matrix that

involve the T3 amplitudes;

Step 10: calculation of the ¶ T3/ ¶ c amplitudes corresponding to perturbation c ;

Step 11: calculation of triple excitation contributions to the ¶ / ¶ c equations;

Step 12: evaluation of triple excitation contributions to the perturbed one- and

two-particle density matrices.

A more detailed discussion than given above for CCSD is warranted here so
that the more complicated considerations that apply to CCSD(T) second derivative

calculations can be made clear. To calculate the T3 amplitudes, two distinct con-

tractions between double excitation T amplitudes (T2) and two-electron integrals

are performed. To calculate the perturbed triple excitation amplitudes (step 10),

9 There is a single contraction with an n2N4 dependence that is required in each iteration
for all these steps.

10 It is trivial to exploit translational invariance, and our codes do this in both numerical
and analytic force constant calculations. However, the discussion in this section is simpli® ed
if all 3N modes are considered.

11 Contractions with n3N4 and n4N3 computational dependence are required in CCSD(T)
and full MBPT(4) calculations.
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72 J. F. Stanton and J. Gauss

® ve contractions are required. Two of these involve ¶ T2/ ¶ c amplitudes and unper-

turbed integrals while two of the others are similar but involve T2 and diŒerentiated
integrals12. Step 5 involves contractions between the unperturbed T3 amplitudes and

the derivative Fock matrix and has a cost that is slightly less than the other four

steps13. The costs of step 8 is comparable with that of step 7, and is about half that

associated with step 11. The contributions of T3 to the unperturbed density matrix

involve two additional contractions that again have roughly the same computational
cost as steps 7 and 8. Step 12 requires contributions from T3 ¶ 2/ ¶ c contractions

as well as those between ¶ T3/ ¶ c 2, and an additional contribution between T3

and ¶ T3/ ¶ c (which can again be avoided but at the cost of potential numerical

instabilities); the overall cost is perhaps 2.5 times that of step 9. If disk storage

was not an issue, the ratio of triple excitation contributions in second derivative
and gradient calculations could be estimated as roughly 7 ± 8:3. However, it is not

practical to store the unperturbed triple amplitudes. In a general-purpose imple-

mentation, they must be recalculated within the outer loop over perturbation (see

® gure 1). The overall cost ratio is therefore increased; a ratio of 3:1 represents a

plausible and somewhat conservative estimate. In the limit that the computational

time is completely dominated by the triples contribution, the cost of a CCSD(T)
second-derivative calculation is expected to be about 9NZT for a molecule with no

symmetry and 3N nuclear displacement coordinates. Hence, relative to the cost of

a gradient calculation at the same level of theory, CCSD(T) second derivatives are

more than twice as expensive as CCSD. However, it should be stressed that this is

an upper limit that is reached only in very large calculations.

A comparison of the costs of analytic force constant calculations with those

associated with numerical diŒerentiation of analytic ® rst derivatives is appropriate

at this point. Using double-sided numerical diŒerentiation and ignoring translational
and rotational invariance (these conditions are not an important consideration for

large molecules, anyway), 6N gradient evaluations are needed; so the overall cost

of the calculation becomes 6NZ . Analytic evaluation of CCSD second derivatives

is clearly the preferred choice; it is faster ((3± 5) NZ) and requires only about

twice the disk storage requirements of a gradient calculation. For MBPT(3) and

SDQ ± MBPT(4), the costs are comparable and the superior accuracy of the analytic
procedure suggests that it should be favoured. However, if triple excitation eŒects

account for more than about half of the overall computational cost for this example,

it becomes more expensive to perform an analytic calculation than to use a ® nite-

diŒerence approach based on the force method. Therefore, one might question the

wisdom of performing analytic force constant calculations at the CCSD(T) level of

12 The alert reader might wonder why a factor of two does not also apply to the calculation
of the perturbed single and double T and amplitudes (steps 4 and 5) at the CCSD level.
Again, there are two classes of contractions involved in these calculations, T ¶ H/ ¶ c and
¶ T/ ¶ c H. However, the former is constant throughout the iterative process and is evaluated
once and stored on disk. This also provides the explanation for the qualitative diŒerences
between high-order MBPT and CCSD with regard to the cost of these steps.

13 In principle, this step can be avoided in most cases. There are two such contributions, one
involving the occupied± occupied block of the Fock operator and the other the virtual± virtual
part. The former is partly avoided in our implementation by a special procedure (use of
canonical perturbed occupied orbitals) that is discussed in [55], but the analogous treatment
of the virtual± virtual contributions has not been implemented since it is likely to lead to
numerical instabilities for very large calculations.
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Analytic second derivatives in high-order MBPT and CC theory 73

theory. While the approximate cost of triples in these calculations could be reduced

to about 7NZT by storing the unperturbed T3 amplitudes, this is not a practical
alternative for large molecules.

The analysis above ignores all issues associated with molecular symmetry. How-

ever, the vast majority of molecules studied by high-level quantum-chemica l methods
have at least one non-trivial element of symmetry14. For these, some of the gradients

in the ® nite-diŒerence procedure must be evaluated for displaced structures in which

symmetry elements have been lost. On the other hand, the fully analytic procedure

exploits the symmetry of the undistorted geometry at all points in the calculation.

The treatment of symmetry in our code is restricted to the highest-order Abelian
subgroup of the full molecular point group. In the most favourable case, the basis

functions are partitioned equally among all irreducible representations, and it can

be shown that the cost of calculation will scale inversely with the square of the

order of the point group (h) [59]. In practice, however, the distribution of functions

is usually not uniform and a somewhat lower factor is actually observed that is

typically in the range (0.6 ± 0.8) h2. Even an optimal choice of distorted geometries in
the ® nite-diŒerence procedure requires that some of the calculations be carried out

for point groups of order h/ 2. These gradient calculations are (roughly) a factor of

three slower than those performed at the reference geometry or for totally symmet-

ric displacements. As two extreme examples, consider the planar molecule HFCO

and diborane. The HFCO molecule has Cs symmetry, and its Cartesian degrees
of freedom can be resolved into eight totally symmetric displacements and four

asymmetric displacements. To calculate second derivatives in a ® nite-diŒerence pro-

cedure, 16 gradients must be evaluated in Cs symmetry and four in C1 symmetry15.

Therefore, the cost of calculating triple excitation contributions for the ® rst class of

gradients is 16ZT and that of the second class roughly 12ZT. While considerably less
favourable than at the CCSD level (16Z for analytic versus 28Z for ® nite diŒerence),

the overall 28ZT cost of the triple excitation contributions in the ® nite-diŒerence

procedure is about 80% of the 36ZT expected in an analytic CCSD(T) calculation.

For diborane, there are four totally symmetric and 20 asymmetric displacements.

In this case, the expected triple excitation costs associated with ® nite-diŒerence and

fully analytic procedures are 68ZT and 72ZT (a factor of three rather than the value
of four corresponding to the fully optimal exploitation of symmetry has again been

assumed for the former); so the fully analytic procedure is expected to be about

the same in this case. For pyridine (a C2v molecule), the corresponding analytic and

® nite-diŒerence costs are again expected to be about the same. Given the assumption

that the cost associated with calculating the gradient at displaced points with lower
symmetry is three times greater than at the unperturbed geometry, it is relatively

straightforward to show that the total costs of triple excitation eŒects (in units of

ZT) for analytic and ® nite-diŒerence force constant calculations are about 3nT and

3nT nS respectively, where nS and nA are the number of totally symmetric and

asymmetric displacements and nT = nS + nA. Hence, the fully analytic procedure is

14 All symmetry operations apart from the identity are regarded as ǹon-trivial’ in this
context.

15 Note that double-sided diŒerentiation is used only for the totally symmetric displace-
ments. For asymmetric displacements that transform as irreducible representations of Abelian
point groups, positive and negative directions are equivalent by symmetry and only one gra-
dient calculation is necessary.
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74 J. F. Stanton and J. Gauss

most e� cient when the ratio of asymmetric to symmetric modes is largest, but the

® nite-diŒerence procedure should always be slightly faster given the present set of
assumptions. In general, there is an advantage of approximately 25 ± 50% associated

with the ® nite-diŒerence procedure when no symmetry is present; any symmetry at

all makes them more competitive in cost.

The discussion above is based on a number of assumptions and idealizations

and is intended only to give a general impression of the relative costs involved in
these calculations. Timings are documented in table 2 for SDQ ± MBPT(4), CCSD

and CCSD(T) analytic and ® nite-diŒerence harmonic frequency calculations for a

number of molecules with varying amounts of symmetry, together with the corre-

sponding ratios (the central processing unit time for the ® nite-diŒerence calculation

divided by that for the analytic) . The algorithm used in the ® nite-diŒerence calcu-
lations is designed to take maximal advantage of symmetry. Unlike most program

packages that use individual atomic displacements, the procedure used here is based

on symmetry-adapted displacements. This ensures that the order of the Abelian

subgroup for all displaced geometries is at least half that corresponding to the

undistorted molecule.

Overall, it can be seen that the rough estimates given above for SDQ ± MBPT(4)
and CCSD calculations are reasonably accurate in most cases. The analytic proce-

dure is most advantageous at the CCSD level, where the timing ratios range from

1.37 (HOOF and N2H2) to 1.71 (HFCO). It should be noted that no dramatic

increase in the timing ratio is found as the order of the point group increases. This

is a consequence of the ® nite-diŒerence algorithm since all calculations are run in
either the full point group or a point group in which the order is half that of the

undistorted structure. If an algorithm based on isolated Cartesian displacements of

the atoms is used, then most gradient calculations would be run in C1 symmetry.

In that case, the timing ratio for a molecule such as diborane would be signi® -

cantly greater than HFCO or HOOH, which is not observed here. The order of
the point group for the unperturbed molecule is not an issue; the two factors that

determine the overall ratio are the number of points run in full symmetry versus

the number run in a lower-order point group as well as the relative cost of gra-

dient calculations in the high- and low-symmetry point groups. The ® rst criterion

implies that timing ratios become more favourable as the number of asymmetric

displacements increases relative to symmetric displacements, while the second crite-
rion controls the numerical magnitude of the increase. If only the ® rst criterion was

operative, high-symmetry molecules such as diborane would have larger ratios in

all cases than lower-symmetry structures. However, it turns out that the partitioning

of orbitals among irreducible representations is less balanced in B2H6 than in the

lower-symmetry HFCO and HOOH molecules, with the result that the analytic
procedure is relatively faster for both of the latter. It should also be noted that the

H2CO and N2H2 examples given in table 2 provide something of a worst-case sce-

nario for molecules belonging to point groups of order four; more than 60% of the

displaced points are run in the full point group symmetry for both molecules. The

documented timings for the CCSD(T) calculations super® cially appear to be more
favourable than a quick perusal of the discussion above might lead one to expect.

However, this is simply because the time spent evaluating triple excitation eŒects

does not overwhelm that associated with the CCSD calculation in any of the cases

presented here. Some idea of the relative cost of the triples part of the calculation

can be obtained by subtracting CCSD from CCSD(T) timings. For example, the
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time associated with calculating triple excitation eŒects for HOOF is 1406 s in the

® nite-diŒerence procedure and 2195 s in the analytic procedure. The timing ratio
is about 0.67, which is in the expected range for a molecule with no symmetry.

To conclude this discussion, it should also be pointed out that the maximum disk

storage requirement is approximately the same in the analytic and ® nite-diŒerence

approaches.

One additional and important feature of our implementation should be men-
tioned. While the most computationally e� cient strategy for analytic MBPT and/ or

CC gradient evaluation requires both the unperturbed Hamiltonian and the two-

particle density matrix to be simultaneously available, the corresponding perturbed

quantities are also needed in analytic second-derivative calculations. Although it

is convenient to have all these quantities available in the molecular orbital (MO)
basis, their storage can become impossible in large-scale analytic second-derivative

calculations where the integrals, derivative integrals with respect to , D and ¶ D/ ¶
are all needed. The principal problem involves the quantities that are labelled by

four virtual (unoccupied) orbital indices, as the number of these far outnumbers the

rest when large basis sets are used. Fortunately, all terms that involve the four vir-
tual index (FVI) integrals are easily formulated and evaluated in the atomic orbital

(AO) basis [60, 61], and the same technique can be used for the derivative integrals

provided that a symmetry-adapted AO basis is used. Hence, the formation of these

quantities can be skipped in integral transformations and no disk space need be set

aside for them. Such an option is available for the FVI integrals in our program

for energy and gradient calculations, and for both unperturbed and diŒerentiated
FVI integrals in analytic second-derivative calculations. It is again convenient to

store the FVI component of the two-particle density matrix, because the evaluation

of orbital relaxation eŒects involves the calculation of certain intermediates that

involve contractions between the density matrix and integrals. However, storage is

unnecessary since the density matrix elements are themselves functions of the (easily
stored) T and amplitudes. Indeed, the two-particle density is truly needed only

when contracted with diŒerentiated integrals and it could in principle be calculated

and processed òn the ¯ y’. However, that is one level of program optimization be-

yond our current implementation, in which both FVI perturbed and unperturbed

density matrices are calculated and stored just before they are needed to contract
with integrals. At these times, there are no other FVI quantities on disk. This

AO-based procedure permits calculations with approximately 150 ± 250 functions to

be performed on workstations equipped with 5 ± 10 Gbyte of disk space. While the

MO-based procedure is certainly somewhat faster, the diŒerence is only about 25%

for calculations that do not involve triple excitation eŒects. For MBPT(4) and

CCSD(T), the overall costs of the two procedures are closer since no FVI quantities
contribute to the triples energy or its derivatives.

3. Applications

In this section, selected applications of our implementation of analytic second

derivatives at high-order MBPT and CC levels are reviewed. While these approaches
have been used to study a number of chemical and spectroscopic problems, the focus

in this section is on those that have involved the calculation of anharmonic force

constants.

The potential energy of a polyatomic molecule is conveniently represented by an
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expansion in dimensionless normal coordinates q [62]:

V

hc
= 1

2 S
i

w i + 1
6 S

ij k

ij kqiqj qk + 1
24 S

ij kl

ij klqiqj qkql, (4)

where w i is the harmonic frequency in reciprocal centimetres and the qi are scaled

versions of the usual normal coordinates Qi:

qi =
2 c w i

ò

1/ 2

Qi. (5)

For polyatomic molecules, the harmonic frequencies are usually not precisely known

from experiment, and information about the cubic and quartic force constants ( ij k

and ij kl respectively) is even more scarce.

Values of harmonic and anharmonic force constants can be interesting in their

own right. For example, the cubic force constant ij j provides a quantitative measure

of how the force constant for motion along the j th mode behaves as the molecule
is distorted along qi. However, the primary importance of cubic and quartic force

constants in the present context is that they serve to connect fundamental properties

traditionally calculated by quantum chemists (harmonic vibrational frequencies, mo-

ments of inertia and equilibrium bond lengths) to those more readily determined by

experiment (fundamenta l vibrational frequencies, rotational constants and average
bond lengths). The former type of calculation still constitutes the vast majority

of those reported in the literature, but there is a decided trend towards accurate

calculation of spectroscopic observables16. With the development of highly accurate

treatments of electron correlation such as CCSD(T) and powerful computers that

permit these methods to be combined with large basis sets, it is now possible to

make very accurate predictions of spectroscopic observables. Alternatively, one can
go in the opposite direction and apply corrections to spectroscopic data to deter-

mine fundamental molecular properties. The latter type of approach is the subject

of section 3.1.

References will be made to several basis sets in sections 3.1 and 3.2. These include

the following: a double-zeta plus polarization (DZP) set (2s1p for hydrogen; 4s2p1d

for other atoms) that is based on a double-zeta set of Dunning [63] augmented

by the polarization functions (p for hydrogen, and d for other atoms) of Redmon
et al. [64]; a triple zeta plus double polarization set (TZ2P) set (3s2p; 5s3p2d)

for oxygen, carbon and hydrogen that is fully described in [65]; the cc-pVXZ

(X = T and Q, corresponding to (3s2p1d; 4s3p2d1f) and (4s3p2d1f; 5s4p3d2f1g) ,

respectively) correlation-consistent series of Dunning [66] and the cc-pCVTZ and

cc-pCVQZ basis sets (3s2p1d; 6s5p3d1f and 4s3p2d1f; 8s7p5d3f1g) [67], modi® ed
versions of the cc-pVTZ and cc-pVQZ sets that are believed to account properly

for the correlation of core electrons. In addition, the cc-pVDZ basis augmented

with diŒuse functions (aug-cc-pVDZ) (3s2p; 4s3p2d) [68] is used. In the calculations

summarized in this section, all electrons were included in the correlation treatment

and spherical harmonic representations of d, f and g polarization functions were

always used. A local version of the ACES II program system [69] was used in all
computational studies reviewed here.

16 For a representative collection of studies, see the entire issues of Spectrochimica Acta A,
1998, 53 (8) and Spectrochimica Acta A, 1999, 55 (3).
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3.1. Determination of equilibrium geometries

All isomers corresponding to a speci® c stoichiometry are de® ned by distinct min-
ima on the potential energy surface. At these points, forces on the atoms vanish and

the structure is said to be at its equilibrium geometry. Although it is recognized that

this geometry provides the only unambiguous quantitative de® nition of molecular

structure, precise equilibrium structures are known for relatively few polyatomic

molecules. The principal reason for the dearth of information is that the equilibrium
geometry is not related to any observable quantity in a direct way. Experiments

are able to determine only some sort of average distance between nuclei [70]. For

example, mean internuclear distances rg corresponding to thermal distributions of

vibrational states are usually measured by electron diŒraction, while X-ray diŒrac-

tion generally provides distances r between mean nuclear positions (which is not
the same as rg

17). Molecular constants determined by rotational spectroscopy via

® ts to rovibrational Hamiltonians can be corrected (if the harmonic force ® eld is

known) to provide rz distances, which are equivalent to the r separations in the

vibrational ground state. Within second-order perturbation theory (anharmonicity is

the perturbation here, and not electron correlation), it is possible to convert among

any of these three measures of distance. It is also possible to derive the correspond-
ing equilibrium structure from any of them if the quadratic and cubic force ® elds

and temperature are known [71].

Rotational spectroscopy also provides other measures of molecular structure.

Isotopic substitution is commonly used to establish so-called eŒective structures (r0).

These are usually obtained by least-squares adjustment of atomic coordinates to
moments of inertia that are based on the assumption of a rigid molecular structure
[72]. The eŒect that individual isotopic substitution has on measured rotational

constants is used to de® ne so-called substitution structures that are quanti ® ed by

internuclear distances rs [72]. While it can be shown that rs lies half-way between

re and r0 for a diatomic molecule described by a Morse potential, it is not true for
polyatomic systems where neither r0 nor rs has a precise geometrical interpretation.

Although ground-state rotational constants do not correspond directly to a

physically meaningful set of internuclear distances, they can be related to those that

are inversely proportional to the principal moments of inertia of the equilibrium

structure using second-order perturbation theory [42, 73]. The equation that relates

these constants (designated as Be for the th inertial axis) to the corresponding
ground-vibrational-stat e constants B0 is usually written as

Be = B0 + 1
2 S

i

i , (6)

where the i are known as vibration ± rotation interaction constants corresponding

to normal mode qi and the th inertial axis. The i depend on three contributions.
Two of these are functions of the harmonic force ® eld and account for eŒects

of perpendicular vibrations on the internuclear distances (see the footnote at the

beginning of this section) and the Coriolis interaction. The third depends explicitly

on the cubic force constants ij j , where i is restricted to totally symmetric coordinates

qi. More generally, it can be shown that each i is proportional to the diŒerence

17 An illustrative example is the oxygen ± oxygen separation in CO2. In the limit when all
modes are harmonic, the r distance is precisely equal to twice the equilibrium CO separation,
while the rg distance is somewhat less because of the curvilinear nature of bending vibrations.
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Analytic second derivatives in high-order MBPT and CC theory 79

between the B rotational constant in the state of the molecule in which mode

i is excited and that in the ground vibrational state. In principle, these can be
determined from high-resolution infrared and Raman spectroscopy, but complete

sets of vibration ± rotation interaction constants are available for only a few molecules.

For polyatomics, determination is often complicated by Coriolis resonances (small

denominators in the Coriolis contribution) which lead to a breakdown of second-

order perturbation theory. However, as equation (6) clearly shows, the diŒerence
Be B0 is not really a function of the individual vibration ± rotation constants, but

rather their sum. Since the B0 constants are a property of the non-degenerate ground

vibrational state, it follows that they should be entirely unaŒected by resonances

among vibrationally excited states. Indeed, the Coriolis contribution to the sum in

equation (6) can be written in such a way that there are no troublesome denominators
[43, 74]. While calculating the sum of the i constants clearly poses no problem,

experimental determination of the sum is possible only when all are known and free

from resonances. When near-degeneracies are present, the individual contributions

cannot be determined with any accuracy since the actual shifts in the rotational

constants will diŒer appreciably from those predicted by second-order perturbation

theory. It is sometimes stated in the literature that calculation of vibration ± rotation
constants is required to extract Be constants from experimental data. In addition to

being technically incorrect, this notion also creates the misleading impression that

an accurate determination of Be B0 diŒerences requires or implies (as the case may

be) that the i constants are themselves comparably accurate. The important point

is that it is possible to determine Be constants reliably from experimentally measured
B0 values even when strong Coriolis resonances make the accurate calculation of i

constants impossible. Hence, the procedure discussed in this section can be applied

to quite large molecules (provided that a su� cient number of isotopically substituted

species have been studied) which are essentially never free of Coriolis resonances.

Once the harmonic and required ij j force constants are calculated, equilibrium

geometries can be determined by a straightforward procedure. First, the experimental

rotational constants B0
18 are converted to what will henceforth be referred to as

empirical Be values. When data are available for a su� cient number of isotopically

substituted species (which are assumed to have identical equilibrium structures) , the

corresponding empirical re geometry is determined by least-squares adjustment of

the atomic coordinates which best ® ts the empirical Be constants. For polyatomics,

this mixed experimental± computational procedure seems to have ® rst been used
by Pulay et al. [75] in a study of methane using force constants obtained at the

SCF level. The same procedure has been used together with quadratic and cubic

constants calculated at the correlated level, most notably by Botschwina, Allen and

their collaborators [43, 74, 76 ± 78].

Calculations of cubic force ® elds are based on the following procedure.

(a) The molecular structure is optimized. The geometry is considered to be
converged when all forces on the atoms are below about 10 7 au.

18 Usually, experimentally determined constants include some contribution from centrifugal
distortion eŒects. In these cases, which include rotational constants ® t to the S and A-reduced
Hamiltonians and those that are a subset of what is known as Watson’s determinable
parameters, centrifugal corrections are calculated from the harmonic force ® eld to convert
the reported values into the corresponding B0 constants. See [72] for details of the various
Hamiltonians and centrifugal contributions.
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80 J. F. Stanton and J. Gauss

(b) The harmonic force ® eld is calculated and normal coordinates are determined.

(c) The cubic constants are evaluated by numerical diŒerentiation of analytic

second derivatives calculated at points that are displaced along the normal
coordinates. For totally symmetric normal coordinates, double-sided numer-

ical diŒerentiation is used. When the set of isotopomers that will eventually

be used in the least-squares ® tting procedure includes structures with a lower

point group symmetry than the unsubstituted species (e.g. the HDCO iso-

topomer of formaldehyde) , then it is necessary to calculate all j kk constants
in which j corresponds totally symmetric modes in the common subgroup

of all isotopomers. For displacements that correspond to asymmetric motion

of the unsubstituted species, only one analytic second derivative calculation

is needed.

(d) Empirical Be values are calculated for the unsubstituted isotopic species,

using both centrifugal corrections and those from equation (6).

(e) The harmonic force ® eld is calculated and the normal coordinates for the

isotopically substituted species are determined.

(f ) The j kk constants are transformed to the normal coordinate representation

of the other isotopomers. This is a linear transformation and requires that
the j kk constants corresponding to rotational modes k be included19.

(g) Empirical Be values are calculated for the isotopically substituted species,

using both centrifugal corrections and those from equation (6).

(h) Least-squares re® nement of structural parameters is carried out to provide

the best possible ® t with the empirical Be constants.

Essentially all the computational time associated with this procedure occurs in

(a) ± (c) above, which have been completely automated with the required displace-

ments automatically determined. The cubic force ® eld calculation can be run in one

of two modes. The ® rst involves sequential evaluation of all second derivatives at
displaced points and runs as a single job directed by a few input keywords. An

alternative option is available in which input ® les for all displaced points are written

out after the harmonic frequency calculation for the undisplaced structure. These

can be run on several diŒerent machines simultaneously, with the result subsequently

processed by a simple job script20. Using highly correlated MBPT and CC analytic
second-derivative methods, cubic force ® elds and empirical equilibrium geometry

determinations have been applied to several molecules in the past 2 years ranging

in size from the ethynyl radical [79] to cyclopropane [80] and benzene [81].

The ® rst equilibrium geometry study carried out with these techniques focused on

the metastable dioxirane molecule, which is thought to play a role in the ozonolysis

of ethylene [82, 83]. Dioxirane features a three-membered ring containing two
oxygen atoms and a CH2 group and is isoelectronic and isostructural with cyclic

ozone. Determination of the structure of dioxirane (in particular the oxygen ± oxygen

separation) by quantum-chemica l calculations has proven to be a very di� cult

problem. Values from correlated calculations reported in the literature are scattered

over a considerable range [84]. For example, a CCSD(T) calculation with the TZ2P

19 Such force constants are non-zero because the system of normal coordinate is rectilinear
[62]. While force constants for rotational modes vanish at the energy minimum, they are
in general non-zero at displaced points, with the eŒect that j mm (m is a rotation) are also
non-zero.

20 This is a particularly appealing realization of parallel processing!
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Analytic second derivatives in high-order MBPT and CC theory 81

Table 3. Equilibrium structures of dioxirane obtained by least-squares adjustment of
atomic coordinates to Be values estimated from experimental rotational constants
B ¢ ¢ and vibration± rotation eŒects calculated by theory. Estimated uncertainties for the
CCSD(T)/ cc-pVTZ level are given in parentheses.

Theoretical re(CO) re(OO) re(CH) e(HCH) Residual

procedure ( ÊA) ( ÊA) ( ÊA) (degrees) (MHz)

SDQ± MBPT(4)/ DZP 1.3848 1.5141 1.0856 117.04 0.29
CCSD/ DZP 1.3848 1.5138 1.0855 117.04 0.36
CCSD(T)/ DZP 1.3845 1.5130 1.0856 117.05 0.59
SDQ± MBPT(4)/ TZ2P 1.3845 1.5144 1.0855 116.97 0.44
CCSD/ TZ2P 1.3846 1.5141 1.0855 116.97 0.51
CCSD(T)/ cc± pVTZ 1.3846(7) 1.5133(3) 1.0853(23) 117.06(35) 0.25

basis set gives re = 1.547 ÊA while con® guration interaction singles plus doubles

(CISD) with a TZ2P basis augmented by f functions on carbon and oxygen and d

functions on hydrogen yields a considerably shorter value of 1.465 ÊA. For the most

part, however, the better calculations give re distances ranging from 1.51 to 1.55 ÊA.

A low-temperature study by Suenram and Lovas [85] succeeded in recording the

microwave spectrum of dioxirane, and studies of ® ve diŒerent isotopomers permitted
the substitution structure to be determined. The corresponding rs oxygen ± oxygen

distance was found to be 1.516 ÊA, near the low end of the range of high-level

quantum-chemica l predictions.

In contrast with the wide range of re(OO) distances obtained by energy minimiza-

tion, those based on empirical Be values determined at various levels of theory diŒer

very little (table 3) [86]. With basis sets ranging in quality from DZP to cc-pVTZ
together with the SDQ-MBPT(4), CCSD and CCSD(T) treatments of electron cor-

relation, re distances range only from 1.5130 to 1.5144 ÊA. The distance corresponding

to empirical Be constants obtained at the highest level of theory (CCSD(T) with

the cc-pVTZ basis set) is 1.5133 ÊA, remarkably close to the rs value. The largest

element of the residual vector corresponding to diŒerences between empirical Be

values and those calculated from the inertia tensors for isotopomers at the re® ned
structure exhibits a general downward trend as the level of theory is improved but

is small (of the order of one part in 104) in all cases. Based on the analysis of these

results, it was possible to establish that the equilibrium oxygen ± oxygen distance in

dioxirane is 1.5133 ÊA with an uncertainty of less than 0.001 ÊA. In order to obtain

high accuracy for this troublesome parameter in an energy minimization procedure,
it is evidently necessary to use CCSD(T) together with relatively large basis sets that

include f and perhaps g functions on all non-hydrogen atoms; optimizations using

the cc-pVQZ and cc-pVTZ basis sets give re(OO)=1.5112 and 1.5136 ÊA respectively,

while the TZ2P basis set (see above) gives a signi® cantly longer distance.

Another illustrative example is propadienylidene (H2CCC:), which has the dis-

tinction of being the smallest stable cumulene carbene. This molecule serves as
a prototype for all larger H2CnC: species (n > 2). Like H2CCC:, many of these

molecules have been detected in the interstellar medium [87]. It is also thought

that their electronic absorptions may account for some of the mysterious diŒuse

interstellar bands, the assignment of which is one of the longest-standing problems

in astrophysics [88]. Accordingly, the fundamental properties of these molecules
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82 J. F. Stanton and J. Gauss

Table 4. Empirical and optimized re structures of propadienylidene determined at various
levels of theory. The numbering of the carbon atoms is the same as their coordination
number.

SDQ± MBPT(4)/ CCSD/ CCSD(T)/ SDQ ± MBPT(4)/ CCSD(T)/
cc-pVTZ cc-pVTZ cc-pVTZ cc-pCVTZ cc-pCVTZ

Obtained by ® t to empirical Be constants

r(C1C2) ( ÊA) 1.3278 1.3278 1.3277 1.3280 1.3280

r(C2C3) ( ÊA) 1.2862 1.2864 1.2864 1.2865 1.2869

r(CH) ( ÊA) 1.0809 1.0814 1.0816 1.0817 1.0828
(HCC) (degrees) 121.33 121.30 121.30 121.29 121.24

Maximum
residual (MHz) 0.78 0.60 0.53 0.54 0.18

Optimized values

r(C1C2) ( ÊA) 1.3189 1.3184 1.3274 1.3312 1.3281

r(C2C3) ( ÊA) 1.2846 1.2846 1.2894 1.2918 1.2879

r(CH) ( ÊA) 1.0791 1.0791 1.0812 1.0848 1.0837
(HCC) (degrees) 121.34 121.30 121.30 121.30 121.27

are of great interest, and propadienylidene has been studied by electronic [89] and

vibrational [90, 91] spectra in rare-gas matrices and microwave [92] as well as

photodetachment [93] spectroscopy in the gas phase. An early empirical re structure

determination for H2CCC: was reported in the literature, but it turns out that the
description of the CCC bending potential in this molecule requires very-high-level

calculations and the published structure suŒers systematic degradation because of

this and a few other problems [92]. Table 4 shows empirical re structures determined

with CCSD(T) and large basis sets as well as corresponding distances obtained

by energy minimization [94]. While internuclear distances and angles eventually

converge to essentially the same values, it is clear that the empirical parameters
are already accurate to within 0.001 ± 0.002 ÊA at the CCSD/ cc-pVTZ level of theory

while the minimum energy structure calculated at the same level is signi® cantly

inferior. In order to obtain a comparably accurate structure by energy minimization,

it is apparently necessary to use CCSD(T) together with very large basis sets (the

cc-pCVQZ set contains 312 basis functions) . Again, the magnitude of the largest
residual element associated with the empirical structures exhibits improvement as

the quality of the methods used to determine the quadratic and cubic force ® elds is

improved. This is comforting, in the sense that it suggests that the treatment of the

vibration ± rotation interaction by perturbation theory is appropriate and that the

right answer is being obtained for the r̀ight reason’.

Estimates of the re structure of cyclopropane have previously been made in the

literature. One of these was based on the use of a simple model of anharmonicity

to correct average internuclear separations determined by electron diŒraction [95]

while the other used experimentally determined ground-state rotational constants

and vibration ± rotation interaction constants to deduce the three independent geo-

metrical parameters [96] for this D3h molecule. Both of these studies also deduced

rz structures by correcting experimental data for vibrational eŒects in the harmonic

approximation. While rz carbon ± carbon distances from the two studies agree rather
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Analytic second derivatives in high-order MBPT and CC theory 83

well (1.516 and 1.513 ÊA for the microwave and electron diŒraction studies respec-

tively), there is a signi® cant discrepancy in the corresponding re distances (1.510
and 1.501 ÊA) where magnitudes of the anharmonic corrections diŒer by a factor of

two. To resolve the discrepancy, an empirical re structure was determined using the

SDQ ± MBPT(4) treatment of correlation together with the cc-pVTZ basis set [80]. It

is perhaps not surprising that a carbon ± carbon distance intermediate between those

based on the electron diŒraction and microwave studies is obtained, revealing that
anharmonic eŒects were slightly overestimated in the latter and underestimated in the

former. Adjusting the observed rotational constants for eŒects of vibration-rotation

interaction gives an empirical equilibrium carbon ± carbon distance of 1.503 ÊA. This is

just slightly greater than that based on the electron diŒraction data and is supported

by a large scale CCSD(T) geometry optimization carried out with the cc-pVQZ
basis set (345 basis functions). That the problem with experimental determination

is almost entirely associated with the characteristic lack of knowledge regarding

anharmonic force ® elds is re¯ ected in rz distance calculated from the re value and

the cubic force ® eld. This value (1.5111 ÊA) is within the uncertainty ranges spanned

by both experimental estimates of this quantity.

It is our belief that the combination of rotational constants determined by
microwave spectroscopy and cubic force ® elds calculated with high-level quantum-

chemical methods represents the most reliable and economical means for determining

the equilibrium structure of molecules. When good experimental data exist for a

su� ciently large number of isotopomers that the number of independent rotational

constants exceeds the number of independent geometrical parameters, empirical
equilibrium structures can always be obtained. The high-level MBPT and CC

analytic second-derivative procedures oŒer a signi® cant asset for studies of this

sort since the calculation of cubic force constants can be carried out in a very

e� cient way for relatively large molecules. Cyclopropane is an excellent example, as

a purely numerical evaluation of cubic force constants for a molecule of this size is
not a feasible proposition.

3.2. Calculation of fundamenta l vibrational frequencies

When the procedure described in section 3.1 is used to calculate the entire cubic

force ® eld, su� cient data are generated to evaluate all quartic force constants of the
form iij k by numerical second diŒerentiation, that is

iij k =

+
j k + j k 2 j k

2
, (7)

where +
j k and j k are force constants evaluated analytically at positive and nega-

tive values of displacements (which may be equivalent by symmetry) of magnitude
along normal mode qi. This is an especially convenient subset of quartic force

constants, since only the diagonal and semidiagonal quartic constants ( iiii and iij j

respectively) appear in the expressions for vibrational energy levels that are derived

from second-order spectroscopic perturbation theory [42]. Hence, when the cubic

force ® eld is determined with the approach described in the preceding section, all
information needed to estimate the positions of fundamental, overtone and combi-

nation vibrational transitions of the molecule is obtained as a simple by-product of

the calculation. The advantages of using normal coordinate displacements, plainly

evident in the present context, were ® rst pointed out by Schneider and Thiel [97].

Thiel and co-workers have applied this procedure using analytic second derivatives
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84 J. F. Stanton and J. Gauss

at the MBPT(2) level to a number of molecules [98] including di¯ uorovinylidene [99]

(which is related to the vinylidene molecule discussed later in this section) and most
recently with CCSD(T) using our analytic second-derivative implementation [100].

Provided that one is interested only in the vibrational frequencies of a speci® c iso-

topomer, the approach outlined here is extremely e� cient. Since the ij kl constants

are not needed, the number of displaced points used in the analytic second-derivative

calculations scales only linearly with the number of atoms in the system. Hence,
the overall cost of the calculation exhibits a cost that scales quadratically. The

alternative approach of evaluating the entire quartic force ® eld (in any coordinate

system, as the corresponding force constants can be subsequently transformed to the

normal coordinate representation) is signi® cantly more expensive, scaling with the

third power of the molecular size when analytic derivative methods are used and the
fourth power when all force constants are determined from numerical diŒerentiation

of calculated energies. However, it should be mentioned that the study of quantum-

dynamical phenomena such as intermolecular vibrational relaxation requires the full

force ® eld and the latter type of calculation is needed in such cases. In addition,

when all quartic force constants are known for the normal isotopomer, those for

any isotopically substituted species can be obtained by linear transformation in the
same way that cubic constants for isotopomers are obtained in empirical re structure

determinations.

Before continuing, it should be mentioned that the work of Lee, Taylor and

Martin (see [40, 41] and references therein) in the area of highly accurate force

® eld and frequency calculations at the CCSD(T) level pre-dates our recent eŒorts
in this area and has dealt with a wide scope of examples. For the most part,

their work has focused on molecules containing three to ® ve atoms with all force

constants determined solely from energy calculations, and their very careful and

detailed analysis of available experimental data has shown that the CCSD(T)

method combined with very large basis sets provides oŒers an extremely accurate
representation of molecular force ® elds. It can fairly be said that their calculations

have provided a majority of the highly accurate anharmonic force ® elds that are

known for molecules of this size.

In the calculation of vibrational energy levels for polyatomic molecules using

spectroscopic perturbation theory, Fermi resonances (small denominators) are a

relatively common occurrence. Unlike the easily avoided issue of Coriolis resonance
in empirical structure determinations, a proper determination of the aŒected energy

levels must deal explicitly with the quasidegeneracy. The usual procedure is to

treat all oŒ-diagonal coupling in the vibrational Hamiltonian (which is expressed

in a multidimensional harmonic oscillator basis) by perturbation theory except the

blocks that couple the quasidegenerate level. The corresponding diagonal elements
are modi® ed and then the energy levels are obtained by diagonalizing the projection

of the resulting eŒective Hamiltonian in the basis of interacting states [42]. This is

not entirely satisfactory, as it is not clear where one should draw the line between

interactions that are treated solely by perturbation theory and those that require

the most comprehensive diagonalization. Denominator arguments alone are not
completely su� cient because very large anharmonic force constants coupled with

what might appear to be s̀afe’ denominators can lead to poor performance of

perturbation theory. In other cases, where experimental analysis is very complete

and detailed, deperturbed vibrational frequencies are determined and reported.

These correspond to calculated values that assume vanishing oŒ-diagonal elements
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Analytic second derivatives in high-order MBPT and CC theory 85

in the projection of the eŒective Hamiltonian and are easily calculated by simply

skipping the diagonalization step. However, when one is interested in the prediction
of vibrational spectra rather than the con® rmation of detailed spectroscopic studies,

only the ® rst option is acceptable. Nevertheless, for the examples discussed below,

a strong Fermi resonance occurs only for one of the modes of diborane, where a

deperturbed value is available [101], while the fundamental modes of vinylidene and

propadienylidene are free from these eŒects.

While it has long been appreciated that signi® cant discrepancies exist between

harmonic frequencies calculated for motions involving the four-membered ring in

diborane and those obtained from the experimentally inferred harmonic ® eld [102 ±

104] of Duncan et al. [101], the source of the problem had not been identi® ed until

2 years ago [105]. At various correlated levels ranging from MBPT(2) to CCSD(T),
very poor agreement has consistently been reported for two of these modes. Cal-

culated values for the b1g and b3u stretching modes (the latter as the strongest

absorption in the infrared) are in the ranges 1910 ± 2000 and 1750 ± 1820 cm 1 re-

spectively, which are both 100 ± 200 cm 1 higher than those based on the inferred

harmonic force ® eld (1814 and 1652 cm 1). Arguments based on valence bond res-
onance structures have been given in support of the idea that a multireference

treatment is needed to provide an accurate description of the potential for these

motions [104]. However, that would be most unexpected and surprising since a

vast amount of experience has suggested that even low-order MBPT methods treat

correlation eŒects in the boranes quite satisfactorily [106]. To address this question,
we thought it best to perform calculations of the actual experimental observables,

namely the fundamental frequencies, rather than to grind away with re® ning the

methods used to calculate the harmonic force ® eld in the hope that the harmonic

frequencies would eventually come into agreement with the èxperimental’ values.

As clearly seen in ® gure 2, essentially all the apparent disagreement between theory

and experiment is associated with inadequacies in the empirical harmonic force ® eld
of [101]. When fundamental frequencies are calculated by combining CCSD(T)/ cc-

pVTZ harmonic frequencies with anharmonic corrections obtained at the CCSD

level with the same basis set, spectacular agreement is achieved with experiment

for the b1g and b3u stretching modes. DiŒerences of 2 and 4 cm 1 are found, with

the other ring stretching modes in only slightly poorer agreement21. By far the
largest discrepancy is found for a torsional mode where the calculated and observed

values of 1091 and 1020 cm 1 diŒer by 71 cm 1. It is interesting to note that while

much attention had been given to the ring stretching modes in the literature, the

apparently troublesome torsional mode escaped attention because calculated and

empirical harmonic frequencies agree rather well.

A second example is provided by vinylidene (H2CC:), which is the smallest cu-

mulene carbenes. While this molecule has a subpicosecond lifetime because of facile

rearrangement to acetylene via a 1, 2 hydrogen shift, it nonetheless has a celebrated

history in physical chemistry. Vinylidene was ® rst studied theoretically in [107],

where initial debate focused on the question of whether the molecule was stable or
rather the transition state for hydrogen scrambling in acetylene. Proof of its quasi-

stable existence emerged in two classic experiments by Lineberger and co-workers
[108] who observed H2CC: as the ® nal state in the photoelectron spectrum of the

21 The ring stretching modes are those at 2088, 1603, 1925 and 1760 cm 1.
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86 J. F. Stanton and J. Gauss

Figure 2. Positions of calculated (upper trace) and experimental (lower trace) vibrational
frequencies of diborane. The èxperimental’ harmonic frequencies are based on the
empirical force ® eld of [101]. See text for a description of the computational methods.

corresponding anion. Study of vibrational structure in the photodetachment spec-

trum revealed a wealth of information about the vibrational levels and isomerization
dynamics of vinylidene [109]. One very curious observation was an extremely large

anharmonicity associated with the HCH rocking mode, which serves as the initial

reaction coordinate for the 1, 2 hydrogen shift. Harmonic frequencies calculated for

this mode at various levels of theory lie near and sometimes above the 450 30 cm 1

band that was assigned to the ® rst overtone of this mode [109]. The possibility that
the assigned feature corresponds to the fundamental transition was discarded be-

cause it is not a totally symmetric vibration. Since the experiment gave no other

indication that either the anion or the neutral does not have C2v symmetry, the

fundamental mode is expected to exhibit no Franck ± Condon activity. As a result, it

can only be concluded that the anharmonicity is so large that the harmonic approx-
imation (which would place the transition several hundred wavenumbers above the

observed position) is completely useless for describing this mode. Clearly, calculation

of the vibrational energy levels of vinylidene is a challenging problem for theory

which tests both the validity of the second-order treatment of anharmonicity and

the quality of the calculated force ® eld. Moreover, it is an important problem since
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Table 5. Vibrational frequencies of propadienylidene calculated with CCSD(T). The har-
monic frequencies are those obtained with the cc-pCVTZ basis set while anharmonic
corrections i w i were calculated with the cc-pVTZ basis.

Harmonic Infrared Fundamental Experimental
frequency intensity frequency fundamentala

(cm 1) (km mol 1) (cm 1) (cm 1)

a1 symmetry

1 3123 5 2997 3050 ± 3060

2 1998 250 1956 1952 ± 1963

3 1495 10 1458 1447 ± 1449

4 1119 2 1111 Ð

b1 symmetry

5 217 3 211 Ð

b2 symmetry

6 3212 0 3069 Ð

7 1052 3 1034 Ð

8 1020 19 996 999 ± 1005

9 275 114 287 Ð

a From [90].

the quality of results should give some indication of how similar calculations will
fare for as-yet-unstudied substituted vinylidenes.

The position of the HCH rocking mode overtone transition is calculated to be

479 cm 1 using CCSD(T) and the cc-pCVTZ basis set [110]. This value is within

the range spanned by the experimental uncertainty estimates and seems remarkably

accurate when one considers how large a perturbation anharmonicity is in this case.
While one might expect second-order perturbation theory to perform poorly, this is

evidently not the case for the rocking potential. In addition, the calculated position of

the 0 ® 4 transition of this mode (767 cm 1) is also in good agreement with a band at

about 730 cm 1 tentatively assigned to this transition [109]. For the other vibrational

energy levels, of course, anharmonic eŒects are less dramatic; the calculated energy
levels are in excellent agreement with the experimental values in all cases. It therefore

appears that calculations of the vibrational levels of substituted vinylidenes might

prove valuable for assigning vibrational structure in the corresponding spectra. To

support this point further, a simulated photoelectron spectrum of the vinylidene

anion is shown in ® gure 3 together with the experimental data of Ervin, Ho and
Lineberger. In the simulation, peak positions are located at the CCSD(T)/ cc-pCVTZ

fundamental, overtone and combination frequencies, while intensities are calculated

in the Franck ± Condon approximation with explicit treatment of Duschinsky mixing

eŒects [111]. Franck ± Condon factors are based on the CCSD(T)/ aug-cc-pVDZ

geometries and harmonic force ® elds of the neutral and anion, and each peak is

represented by a Lorentzian with a full width at half maximum of 80 cm 1. This plot
rather dramatically illustrates that high-level calculation of structures and molecular

force ® elds oŒers a valuable aid in assigning the spectra of unstable or unusual

molecules.

The ® nal molecule discussed in this section is the next largest cumulene carbene,
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88 J. F. Stanton and J. Gauss

Figure 3. Observed (+) and simulated (- - -) photodetachment spectra of the vinylidene
anion. The origin of the simulated spectrum is positioned so that it coincides with
that of the experimental spectrum. A full description of the parameters used in the
simulated spectrum is given in the text.

propadienylidene. This molecule, which was also discussed in section 3.1, has been
studied in rare-gas matrices where both electronic [89] and vibrational [90] spectra

have been recorded. Together, the electronic spectrum (which is well understood) and

the infrared spectrum serve as markers for monitoring the presence and depletion of

this species in photochemical experiments [91]. While its electronic and microwave

spectra have been analysed with high-level CC methods, the vibrational spectrum

has received somewhat less attention. This situation is remedied here. Table 5 lists
fundamental frequencies calculated for this species along with values observed in an

argon matrix and assigned by Maier et al. [90]. Two values are given for all but one

of the latter since site eŒects split the corresponding absorptions into doublets. The

calculated values are based on CCSD(T)/ cc-pCVTZ calculations for the harmonic

force ® eld with anharmonic corrections obtained with CCSD(T) and the cc-pVTZ
basis. For all but one of the transitions assigned by Maier et al., the diŒerences

between calculated and observed frequencies is less than 10 cm 1. However, an

extremely large discrepancy is apparent for the totally symmetric CH stretching

mode, where the calculated value of 2997 cm 1 is more than 50 cm 1 below the

frequency of 3050 ± 3060 cm 1 which was assigned to this mode. The experimental
assignment was guided by relative intensities calculated for the 1 and 6 modes

at the MBPT(2) level [90]. As in the calculations reported here, the former was

predicted to have a much larger intensity than the latter, and the observed transition

was therefore assigned to 1. However, we believe that the observed absorption can

instead be con® dently assigned to 6, which is predicted by theory to lie at 3069 cm 1.
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Indeed, it seems rather unlikely that the calculated values are more than 50 cm 1 in

error. For acetylene, the same theoretical treatment gives 3369 and 3297 cm 1 for
the antisymmetric and symmetric stretching modes [112], which diŒer only a little

from the experimental values of 3373 and 3288 cm 1 [113].

Since analytic dipole moment derivatives are obtained for essentially no addi-

tional cost in a quadratic force constant calculation, they may also be diŒerentiated

numerically when cubic or quartic force ® elds are calculated in much the same way
that the quadratic force constants are processed. This point is made because all

coe� cients ai, aij and aij j in the dipole moment expansion

= e + S
i

aiqi + 1
2
aij qiqj + 1

6
aij kqiqj qk + (8)

can be obtained by these means, and only these are needed to obtain infrared

intensities that are correct up to second order [114]. Generally, infrared intensities

are calculated in the double-harmonic approximation in which the potential and
dipole moment function are assumed to be quadratic and linear functions respectively

of the coordinates. At this level of approximation, the intensities of overtone and

combination bands vanish. The ® rst-order correction contributes to overtone and

combination intensities while the second-order correction makes a contribution to

the intensities of fundamental transitions. Hence, the quadratic and selected cubic
coe� cients in the dipole moment expansion are a most convenient byproduct of

quartic force ® eld calculations that we have not yet exploited. Although it is quite

likely that the re® ned estimates of fundamental transition intensities will have

little impact in chemical applications (the residual error in the double harmonic

approximation due to basis set and correlation error is probably at least as large in
magnitude as the second-order correction), the ability to estimate which if any of the

overtone and combination bands might appear prominently in the spectrum should

be very useful. In passing, we note that, while the incremental cost of obtaining the

dipole moment expansion coe� cients is negligible in our approach, it represents a

signi® cant incremental cost when strictly numerical procedures are used.

4. Summary

The applications discussed in the previous section of this review are those that

involve calculations of anharmonic force ® elds for polyatomic molecules. However, it
should be emphasized that the high-order MBPT and CC analytic second derivative

methods are also bene® cial for other types of calculation. As demonstrated here,

these calculations are usually faster for the calculation of harmonic frequencies and

infrared intensities than those based on a ® nite-diŒerence scheme. Hence, analytic

second derivative methods are well suited to use in routine application studies, which
typically involve the evaluation of these properties. A particularly interesting class

of applications involves the study of open-shell systems that have so-called Hartree ±

Fock instabilities. In these cases, it is often not possible to obtain solutions to the SCF

equations at distorted geometries of lower symmetry that correlate to solutions that

transform as a pure irreducible representation of the point group at the undistorted
geometry. It is accordingly very di� cult to determine the harmonic force ® eld for

systems of this type. While it is often thought that the presence of an instability

implies strong coupling of the pseudo-Jahn ± Teller type and a consequent need for a

multireference treatment, these problems often occur even in cases where there are

no near-degeneracies in the actual spectrum. Calculations of the harmonic force ® eld
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are of course straightforward when analytic procedures are used. Results obtained

for two systems with UHF ± CCSD(T) that had not previously been studied at this
level of theory, namely the formyloxyl and nitrogen trioxide radicals, are in good

agreement with high-level multireference approaches and experiment respectively

and call into question the common wisdom that single-reference approaches are

insu� cient for problems of this type [115].

As stated earlier, our implementation of the asymmetric approach can be applied
to evaluate any second-order property that corresponds to either real or formally

imaginary perturbations. Perhaps most prominent among the latter type is the

magnetic shielding tensor that governs NMR chemical shifts. In fact, this was the

application area to which these methods were ® rst applied. Several studies demon-

strated that very accurate NMR chemical shifts can be obtained with CCSD(T).
One particularly notable example is the cyclopropylcyclopropylidenemethy l cation,

for which the chemical shift calculated for the carbocation centre with MBPT(2)

diŒers from the experimental value by more than 20 ppm [116]. On the basis of

this discrepancy, the extent to which the structure of this molecule is aŒected by

solvation in superacid solution was called into question [117] despite the fact that

these solutions are known to be non-coordinating . However, all doubt was removed
when the NMR spectrum was calculated at the CCSD(T) level, where the calculated

and measured NMR shifts are 234.1 and 234.2 ppm respectively [118]. Calculations

of the magnetic resonance spectrum of this and other vinyl cations have been re-

viewed elsewhere [119]. In another application, CCSD(T) calculations were used

to establish a reliable absolute scale for 17O shieldings [120]. Quite recently, NMR
chemical shift calculations at the CCSD(T) level played a vital role in the laboratory

identi® cation of the N+
5 ion, the ® rst all-nitrogen species to be synthesized in more

than a century [121].

Additional second-order properties that have been calculated with analytic sec-

ond derivative methods including triple excitation eŒects include indirect nuclear
spin ± spin coupling constants [122], spin rotation constants [123] and electric polariz-

abilities [124, 125]. Analytic second derivatives have also recently been implemented

at the CCSDT-1, CCSDT-2, CCSDT-3 and CC3 levels of theory, all of which include

an iterative treatment of triple excitations eŒects [126]. With the completion of that

project, the roster of MBPT and CC methods for which analytic second derivatives

are available has been expanded to all methods in table 2 that have either an
N6 or N7 computational dependence and includes all methods for which analytic

® rst derivatives are available. We have recently implemented third derivatives at

the CCSD and CC3 levels [125] that do not include orbital relaxation eŒects. The
ÊArhus group has also implemented both third and fourth derivatives of the unre-

laxed CCSD energy [127, 128]. In some respects, going from analytic ® rst to second
derivatives is a more di� cult process than extending an analytic second-derivative

implementation to third derivatives. The reason is again the 2n + 1 rule; only the

® rst derivatives of the wavefunction are required to evaluate third derivatives and

these are already evaluated in an analytic second derivative calculation. While our

implementation is currently restricted to one-electron perturbations (which yield
hyperpolarizabilities when the electric ® eld perturbation is chosen), extension to

cubic force constant calculations would require that third derivatives of one- and

two-electron integrals be calculated as well as the corresponding two-particle den-

sity matrix contributions, and these are not implemented in our programs. Finally,

dynamical (frequency-dependent ) properties can be calculated with a very simple
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generalization of an analytic derivative program and moreover cannot be evaluated

by standard numerical diŒerentiation techniques. Our codes have this capability
and have been used to calculate frequency-dependent electric polarizabilities and

hyperpolarizabilities [124, 125, 129, 130], again using unrelaxed orbitals. It must be

emphasized that the calculations discussed immediately above (third derivatives and

dynamical properties) are not simply for pilot-scale applications. Indeed, our codes

have been used to calculate frequency-dependent hyperpolarizabilities for the water
molecule using basis sets that contain more than 150 contracted Gaussian functions
[129].

Levels of theory such as CCSD(T) include a nearly quantitative treatment of

electron correlation for many molecules, and the availability of analytic second- and

third-derivative methods for these methods opens up exciting possibilities for chem-

ical applications. The computational requirements associated with these approaches
are discussed in great detail in this review. For all properties such as quadratic force

constants that can also be evaluated with ® nite-diŒerence techniques, the correspond-

ing analytic procedures are always comparable in cost or faster and do not have

excessive disk storage requirements. For many other applications (NMR chemical

shifts and other magnetic properties, force constant calculations for systems exhibit-

ing Hartree ± Fock instabilities and frequency-dependent properties), ® nite-diŒerence
procedures cannot be used and analytic procedures are the only viable option. The

new millennium is truly an exciting time for quantum chemistry. A long-standing

goal of the ® eld has been to calculate molecular properties and spectroscopic observ-

ables with near-quantitative accuracy. While success was achieved long ago in this

pursuit for diatomic and triatomic molecules, similar levels of accuracy have been
achieved for larger systems only in recent years. As demonstrated by the applications

presented in the previous section, the use of analytic second-derivative procedures

at high levels of theory such as CCSD(T) represents an important advance towards

this objective.
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